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Abstract. Local iterative learning algorithms for the interactions between Ising spins in 
neural network models are discussed. They converge to solutions with basins of attraction 
whose shape is determined by the noise in the training data, provided such solutions exist. 
The training is applied both to the storage of random patterns and to a model for the 
storage of correlated words. The existence of correlations increases the storage capacity 
of a given network beyond that for random patterns. The model can be modified to store 
cycles of patterns and in particular is applied to the storage of continuous items of English 
text. 

1. Introduction 

Networks of N Ising spins with pairwise interactions between the N sites can be 
interpreted as neural network models. In this analogy, the Ising spin variable represents 
a (grossly simplified) neuron which can exist in only two states, j iring and notjiring, 
and the exchange constant between two spins represents the synaptic efficacy or 
connection strength between the corresponding ‘neurons’, determining the effective 
field (potential) on one due to the state of the other (McCulloch and Pitts 1943, Hebb 
1949). Such a network can be used to store a prescribed set of N-bit patterns, in the 
sense that, in the absence of thermal noise, each of the prescribed patterns is self- 
replicating. This information is stored with content-addressable memory: it is possible 
in principle to recover one of the prescribed patterns from a noisy initial version of 
that pattern. 

In the context of such Ising-like models, the dynamics for the recovery of this 
information is defined by 

n 

S,( t + 1) = sgn h,( t )  where h(r) = c T,,S,(t). (1) 
J = l  

Here S , ( t )  = i l  is the Ising spin at site i ( = l ,  . . . N )  at time t, and T, is the interaction 
strength of the bond from s i te j  to site i. The updating of the spins depicted by equation 
(1) can be done either in series (Hopfield 1982) or in parallel (Little 1974). The 
interaction strengths TJ should be constructed if possible so that the attractors of the 
dynamics (1) are the P prescribed patterns 6: = * l ,  i = 1, . . . N, p = 1, . . . P, which 
one wants to store; a weaker constraint is that the attractors should be highly correlated 
with the t?. This construction should be designed to maximise both the number of 
patterns which can be stored and the number of wrong bits which can be tolerated in 
the noisy state in order to be in the domain of attraction of the pattern. 
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Analytic results have been obtained using particularly simple ansatzes for the 
couplings. The Hopfield model can store up to 0.14N random patterns (Amit et a1 
1985a, b, 1987, Gardner 1986, Bruce et a1 1987) while the pseudo-inverse (Kohonen 
1984, Personnaz et a1 1985, Kanter and Sompolinsky 1987) can store up to N linearly 
independent patterns. 

Although these models have considerable interest, their storage capacities are 
disappointing, Firstly, the potential capacity of pairwise connected networks can be 
much larger; the maximum number of random patterns (Cover 1965, Venkatesh 
1986a, b, Baldi and Venkatesh 1987) which can be stored is 2N, and this increases if 
the patterns are correlated (Gardner 1987a, 1988). Secondly, at this level of storage, 
the model defined by (1) is computationally wasteful; noisy pattern recognition for 
P <  N can be achieved by a direct comparison of the noisy input pattern with each 
of the nominated patterns. 

The purpose of this paper is twofold. First, in 0 2, we review an iterative local 
training algorithm which increases the storage capacity to its maximum possible, in 
terms of both the number of stored patterns and their content-addressability. We 
shall prove that provided solutions for the T, exist, i.e. that it is possible in principle 
to store the prescribed patterns with a specified content-addressability, then the 
algorithm converges to one such solution. This algorithm (more precisely, family of 
algorithms) is an extension of Perceptron learning (Rosenblatt 1959, Minsky and Papert 
1969) in two senses: to recurrent networks and to training with noisy initial vectors. 
The former aspect ensures that it is also akin to the error-correcting back-propagation 
algorithm (Werbos 1974, Parker 1985, Rumelhart et a1 1986), for which however no 
convergence theorem exists as yet. The latter aspect ensures that the content-addressa- 
bility is adapted to the noise statistics in the data. Preliminary results for the storage 
of random prescribed patterns have been described earlier (Wallace 1985, 1986, Bruce 
et a1 1986). Second, in 0 3 we consider a model for the storage of words. In particulaar 
the model can be used to store continuous pieces of english text. In 00 4 and 5, 
numerical results on the application of the algorithms to the storage of random patterns 
and to word storage respectively will be given. Conclusions are in 0 6. 

2. The training algorithms 

The strategy of the algorithm is as follows. Let SP be any vector which differs from 
a particular input pattern (Y on a fraction of bits less than or equal to f: We then 
define an error mask, which depends on the particular noisy pattern, by 

for each site i; it takes the value 0 (1) according to whether site i of pattern p is (is 
not) correctly retrieved. The matrix T, is then updated according to the rule 

i # j only (3) 
which increases the quantities ( P h , ( S ’ )  only on sites which are in error at time t. 

The symmetrical version changes TI by AT, +AT,,, where ATl is given by (3). 
In contrast to the back-propagation algorithms used in models with hidden units 

(Werbos 1976, Parker 1985, Rumelhart et a1 1986), a convergence theorem exists for 
these algorithms. Specifically, provided there exists a solution for the couplings T, 
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which will recover each pattern p in one iteration using equation (1) from any initial 
S' within a Hamming distance Nf of t', repeated iteration of (3)  will converge to 
some such solution. 

The proof of convergence for the first algorithm (3) parallels the Perceptron 
convergence theorem (Rosenblatt 1959, Minsky and Papert 1969): we define the scalar 
product of two interaction matrices T and U at the site i by 

( T *  U ) i  = r j U u  

and the norm of T at the site i by 

(4) 

and we will assume that a solution T$  exists such that 

ty( T* S')i  > 611 T*lli ( 6 )  
for some positive number 6 and for each noisy initial vector S'. The proof of 
convergence follows by showing that the quantity 

(T '" '  * T*)* 

where T'"' is the interaction matrix at the nth application of (3) at the site i, will 
eventually increase above 1 if the algorithm does not converge. However this quantity 
is bounded above by 1, by the Schwartz inequality; and the algorithm must therefore 
converge after a finite number of steps. Specifically, consider a pattern with E Y > O .  
Since from equation (3) 

A ( (  T* * T '" ' ) , )  = E ? ( ? (  T* * S'), 

'~11T*IIlE? 

and 

we have that 

where n is the number of iterations with ~f = 1, so the algorithm must converge when 
n becomes sufficiently large. 

The asymmetric algorithm can be done either in series or in parallel in the sites i 
since the theorem holds at each site i. The proof of convergence for the symmetric 
algorithm ( T o  = T I )  is similar but the scalar product defined in equation (4) is replaced 
by 

and the theorem applies only if the updating of the sites is done in parallel. As given, 
the proof assumes the patterns are presented in serial. It extends trivially to the case 
in which the patterns are divided into groups, those within each group being presented 
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in parallel and the groups sequentially. The above inequalities are replaced by 
>81(TllIXP&r and < NgXP&r ,  where g is the number of patterns in a group. 

It is also straightforward to show that for a given stored nominated pattern, if all 
noisy versions with exactly j7V bits flipped iterate into it in one step, then so d o  all 
patterns with fewer spins flipped. Hence, for the isotropic basins of attraction which 
we study, we need train only on the ‘rim’ of the basin of attraction and  this is what 
we d o  in practice. For the proof, suppose that T is a row of the weight matrix and  
S(j7V) is a certain nominated state, S, withj7V spins flipped. Suppose further (without 
loss of generality) that the desired output of the element corresponding to the row 
with weights T is positive. By assumption, T .  S( j7V)  > 0 (we have a solution for j7V 
spins flipped). Now consider one of the noisy states with j7V - 1 spins flipped. We 
are required to prove that T .  S ( f N  - 1) > 0. Flipping the a t h  (correct) spin creates 
one of the S ( f N ) ,  so 

T .  S ( f N - l ) =  T *  S ( f N ) - 2 T , S , ( f N )  

> 2 T,S, 

where Sa is the a th  component of the nominated state itself. This must be true for 
any choice of the component a from the set of correct spins in S ( f N )  since we assume 
T .  S ( f N ) > O  for all S(j7V).  However, at least one of those components gives the 
correct sign for the output since T .  S ( J N )  + T .  S > 0 ,  so T .  S ( f N  - I )  > 0, as required. 

There are many generalisations of these algorithms and  here we note two. First, 
they may obviously be extended to solutions which converge to the pattern in more 
than one iteration. For example the asymmetric one becomes for two iterations 
ATv = EY€YS~’ where S” is the configuration S’ after one iteration of equation (1) 
and E ,  is 1 provided the bit i is wrong after two iterations using equation (1). Second, 
they can be generalised to situations in which the noise is not isotropic, and can 
therefore be used to construct asymmetric basins of attraction. 

Finally in this formal section, we note that, as for perceptrons, the dynamical range 
of the T, is also self-limiting for those algorithms for which convergence can be proved. 
Thus, even if one training task cannot be accomplished, because for example no 
solution exists for the prescribed patterns, the values of the Tv will not have increased 
unboundedly. Clear evidence of this desirable property is found in the numerical 
results of Q 4. 

3. Word storage model 

The storage of representations of English words is an example of a wide class of 
common problems. Consider words of a given number, L, of letters. For a lower-case 
dictionary, the number of such words is in principle exponential in L :  26L. However, 
in reality the correlations between letters reduce the number of recognisably ‘English’ 
words to much less than 26L. Other examples are the sets of phonetically spelled 
words, o r  of syntactically allowed sentences in English (or any other language) 
composed of appropriate syntactic elements. 

I n  order to implement such problems, we represent each letter by some n-bit pattern. 
In principle, these could be random-bit patterns, o r  n-pixel representations of the 
letters, o r  (modulo the crucial dynamic time-warp problem) a spectrographic rep- 
resentation of the phonetic sound. Words of L letters are then represented by patterns 
of N = nL bits, which one wishes to store on an  N-mode network. This structure has 
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some resemblance to the word storage reported by Personnaz et al (1986), but differs 
in its aims and training strategy. 

In practice, we have used random 64-bit patterns to represent characters, and have 
studied the storage of four-letter words on 256 nodes, and eight-letter words on 512 
nodes (the storage of words of up to eight letters is readily achieved by introducing a 
dummy character to make the number of letters up to eight in every word). The 
simulations were performed on the ICL Distributed Array Processor ( DAP), a 64 x 64 
grid of bit-serial processing elements. The full parallelism of the machine is exploited 
by training simultaneously on successive groups of 16 words (8 for the 512-node 
model), achieving some 25 million operations (conditional ADDS) per second. Further 
details are provided by Stroud and Wallace (1987). 

Some preliminary comments may be helpful to indicate why the fully connected 
net without hidden units should be able to tackle this problem. We note that the 
prototype spurious states (Amit et al 1987) generated by the Hopfield prescription are 
mixtures of three or more of the prescribed patterns. Words can be viewed in the same 
way; for example, SAT is a ( ; , f , f )  mixture of SIT, CAT and SAD (assuming each 
letter is a random bit pattern). To the extent that the language is determined by its 
pair correlations, the specific mixture states are useful generalisations and the storage 
capacity of the network should be larger than for random words. Higher spin correla- 
tions could also be introduced to remove undesired words based on pair correlations 
between letters. 

We have extended the code to handle continuous text, by stepping a ‘window’ 
along it to pick out successive eight-letter segments. In the training mode, one would 
typically start with an input pattern corresponding to the first eight letters of the text, 
with some noise level. This is iterated once, the error mask (2) calculated, and hence 
the change in weights (3). The existing pattern on the net slides along to introduce a 
new 64-bit pattern, corresponding to the ninth letter in the text with some noise level. 
The 512-pixel pattern is iterated once to find the error mask (2), and so on. The same 
approach is adopted in the recall mode, the 64-bit pattern on the left providing the 
single output letter at each step of the window; this output has been influenced by a 
15-letter wide segment of the text, including seven letters before and seven after. The 
number of iterations of the net between each step can be a rather crucial parameter. 
If only one iteration is allowed, this may be insufficient to remove all of the pixel 
errors. If a large number of iterations is allowed, the incoming noisy pattern may 
corrupt the existing seven-letter pattern to such an extent that the net ‘crashes’, 
producing completely spurious output. The net can also be used in a pattern-generating 
mode, using a cue of the first seven letters alone to generate the remaining text, to the 
capacity of the net. 

4. Numerical results for random patterns 

Numerical results for random patterns will first be discussed. 
The training schedule consisted of up to 20 cycles with zero noise-in order to 

learn the patterns-followed by a multiple of 16 cycles with noise of a given number 
of spin flips, finishing off with a further session of up to 20 cycles with zero noise to 
ensure that the patterns themselves remain learnt. Each cycle consists of one entire 
sweep through all sites and all patterns for one noisy initial vector per pattern, using 
the symmetric algorithm in parallel on the sites and in series on groups of 16 (4-letter) 
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or 8 (8-letter) patterns. The percentage of patterns which are exactly recovered after 
complete iteration starting with noisy initial vectors with the same amount of noise is 
plotted in figure 1 against the number of training cycles, for 64 patterns on 256 nodes 
and for noise levels of 25, 31.25 and 37.5% (32, 40 and 48 spin flips). This shows that 
the system learns on 25% noise but fails to learn on 31.25% noise after 150 cycles. 
Clearly this is a substantial improvement on the Hopfield model, which fails to store 
more than 0.14N patterns. 

An important question is the way in which the number of learning cycles scales 
with the system size. Since the number of states at a given fractional Hamming distance 
from a pattern scales exponentially with system size N,  this suggests that the algorithms 
might also scale in this way. However we find that the algorithms scale polynomially 
with N. In figure 2, the fraction of wrong bits (after one iteration) is plotted against 
the number of learning cycles for two different sizes N = 256, N = 512 for noise levels 
12.5, 25, 37.5% (16, 32, 48 spin flips for N = 256), for P = 0.25 N, and shows that if a 
given fraction of wrong bits is allowed, then the number of cycles required does not 
depend on the system size. This means that if the number of patterns P is of order 
N, the computational complexity scales as N 2 ,  i.e. linearly with the information stored. 

Typically we find that although the mean number of iterations to stability decreases 
with learning, it has not decreased to one iteration after 150 cycles even for situations 
in which all patterns have been learnt. The mean iteration time was calculated only 
for initial states which moved towards the pattern. For example, for 64 patterns on 
256 nodes, iteration times reduced from 1.2 to 1.07 on 12.5% noise after 150 cycles, 
while for 6.25% noise times reduced from 1.2 to 1.02. 

The boundedness of the T,, was demonstrated. Results for the symmetric parallel 
algorithm of § 2 are compared with results using an algorithm which modifies the T, : 

AT, = &f5?5f (8) 

100 

15 

- 
v, 

50 
U 

2 I/) 

25 

0 50 100 150 2( 
Number of training cycles 

Figure 1. Percentage success after complete iteration against number of learning cycles for 
64 random patterns on 256 nodes trained on 25,  31.25 and 37.5% noise. 
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12.5% noise 
7 I 

0 50 100 150 

Number of  training cycles 

Figure 2. Fraction of wrong bits after one iteration against number of learning cycles for 
64 random patterns on 256 nodes (-) and 128 random patterns on 512 nodes (---), 
trained on 12.5, 25 and 37.5% noise. 

for which no convergence theorem can be proved. The result, for example, for 128 
patterns on 512 nodes and 37.5% noise is that the T, remain bounded at an RMS value 
of 25 after 150 learning cycles for the algorithm of § 2 ,  whereas the RMS value of Tu 
is 40 after 150 cycles and continues to increase, for algorithm (8). 

5. Numerical results on word storage 

In figure 3 the training schedule is the same as that described in 0 4, figures 1 and 2, 
for random patterns. The percentage of letters which are exactly recovered after 
complete iteration starting from noisy initial vectors with the same amount of noise is 
plotted against the number of training cycles, and is compared for three dictionaries, 
on 25, 31.25, 37.5, 43.75, 50% noise, for 64 words on 256 nodes and averaged over 
five runs. Figure 3(a)  shows the results for 64 random patterns, 3 ( c )  is for a dictionary 
of 64 real words, and 3( b )  is for the same dictionary but with the letters jumbled at 
random. The learning in 3 ( b )  is faster than 3(a)  due to correlations coming from 
different words containing letters which are the same, and 3( c) is faster than 3( b )  due 
to the pair correlation which occurs in real words. 

Of course there may be many other spurious states in which the sub-patterns cannot 
be identified with letters. Further, if the number of different letters or characters is 
less than 64, all possible words still span only a subspace of all possible states. Clearly, 
one possible storage solution is a separable net, in which all possible letters are stored 
on each 64-bit subnet, and all the connections between the letters of a word are set to 



2026 

100 -$ 

7 5  - 

5 0  - 

2 5  - 

E J Gardner, N Stroud and D J Wallace 

I C  1 

<25 % 
L 

31.25% 

75 
-37.5 % 

-43.75% - 
-50% 

50 - 

100 -1 

75 

50 

vl 

25 

0 4  c 

4 c 
0 50 100 150 200 

Number of  training cycles 

Figure 3. Percentage success to a letter after complete iteration against number of learning 
cycles on 25, 31.25,37.5,43.75 and 50% noise, for 64 words on 256 nodes, for ( a )  random 
patterns (from figure 11, ( b )  jumbled words, ( c )  real words. 

Table 1. Results for the percentage success to a letter obtained after training on a dictionary 
of 64 real words ( D l )  and one of the same dictionary with the words jumbled (Rl) are 
tested on two dictionaries of real words ( D l ) ,  (D2) and the corresponding jumbled word 
dictionaries (Rl),(RZ)aftertrainingfor 150cycleson(a) 12.5,(b) 25and(c)  37.5% noise. 

( a )  D1 R1 ( b )  D1 R1 (C) D1 R1 

D1 100% 37% D1 100% 36% D1 95% 28% 
D2 56% 40% D2 58% 41% D2 48% 30% 
Rl 37% 100% RI 36% 99% R1 31% 92% 
R2 38% 35% R2 37'0 30% R2 28% 22% 
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zero. Such a net would store all words, but would have no information about the 
characteristics of English words, beyond possibly the letter frequency. A key question 
will therefore be the relative strengths of the interactions within and between letters. 
We show that contextual information is being used in table 1. Four dictionaries of 
256 words are used. The first two, D1 and D2, are different dictionaries of real words, 
and the second two are jumbled versions of D1 and D2, R1 and R2 respectively. One 
‘real’ dictionary ( D l )  and one ‘jumbled’ one (R l )  are trained into a 256-node network 
with 12.5, 25 and 37.5% noise, for 150 cycles. All four dictionaries are then tested 
against the resulting networks. The results show firstly that percentage success is 
significantly greater for the dictionary used in training, implying that a large fraction 
of spurious words have not been learnt. Secondly the results for a real-word dictionary 

Table 2. Results for percentage success to a letter for 150 learning cycles on 12.5% noise 
for 256 words on 256 nodes for dictionaries (Dl) ,  (D2), ( R l )  and (R2), for ( a )  0, ( b )  25 
and ( c )  50% dilution of bonds within each letter. 

(0 )  D1 R1 

D1 100% 91% 
D2 94% 90% 
R1 70% 100% 
R2 69% 94% 

( b )  D1 R1 ( C )  D1 R1 

D1 96% 64% D1 16% 26% 
D2 84% 63% D2 59% 25% 
R1 51% 91% R1 27% 50% 
R2 51% 72% R2 26% 32% 

4 
0 20 40 60 80 100 120 140 160 

Number of training cycles 
Figure 4. Percentage success to a letter after complete iteration against number of learning 
cycles for 64 words on 256 nodes, on 25% noise, for symmetric and asymmetric algorithms. 
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tested on a network trained with the other real-word dictionary are significantly better 
than the results on the jumbled word dictionaries, showing that contextual information 
(i.e. from the pair correlations between letters) is being used by the network. We also 
tried to enhance the effect of contextual information over single letter information by 
diluting connections within letters. Results with 0, 25 and 50% dilution are shown in 
table 2 for the same four dictionaries as above, for 256 words on 256 nodes with 12.5% 
noise. Although storage capacity is reduced as the dilution is increased, the fraction 
of spurious words is also reduced at high dilution, but with the second set of real 
words D2 still favoured compared with R1 and R2. 

The symmetric algorithms improve only slightly on the asymmetric algorithms. 
This is shown in figure 4 for 64 words on 256 nodes with 25% noise, where the 
percentage success to a letter is plotted as a function of the number of learning cycles. 

In figure 5 we show the output obtained using the continuous text model of § 3, 
with 25% noise. The output illustrates how the training first stores common letters 
and common words, and then more general features, as one might expect. 

Session 6: Final states of (fixed) random start: 
- t h e ~ l a d d e r s ~ * + _ t h e ~ m i n d _ a r e _ t " e s _ w h i c h ~ v e ~ ~ * e ~ t o ~ * r * c ~ ~ * o * n ~ i t e m s ~ o f ~ k n o  
vled~e_which_cann't_be~immetiatel'_re'embered-t~e-or*anisation-and-the-she**es 
_~ i l+ -~orm_importa ' t_ to+ i+s_ in -our- la ter -d i~~*ss ion- the -~or*- that -~oes -on-a~- t  
he-~enct_must_atso_be_.on' idered_tor_here_the_"s_vhich-**_into_fhe**~ore_+~ 
y-be_ta**n_to-*iete*_and-reassem*led-ant-a-s~etth-may-~e-tade-of-their-internal- 

Session 8: Final states of (fixed) random start: 
t h e _ l a d d e r s _ o E _ t h e _ m i n d _ a r e _ t h e _ ' + . e s _ w h - i t e m s - o f - k n o  

~dge_vhich_cannot_be_immediatel~_r'mem'ered_the-or~anisat ion-and-the-shel'es 
_ v i l l _ f ~ r m _ i m p o r t a * t _ t o * i c ~ ~ i ~ - o ~ r _ l a t e r - d i s ~ u s s i o n _ t h e - ~ o r + - t h a t _ g o e s _ o n _ a t _ t  
he_~ench_must_also_+e*ttnt*tered-~or-here-the-items-vh~ch-~o-into-the-~tore-ma 
y_be_taken_to_ ' i eces_and_reassembled-and-a - s te tch_may_t~- the ir_ in terna*_  

Figure 5. Output from continuous text model trained on 25% noise, at various stages 
during the training. 
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6. Conclusions 

We have discussed how the perceptron convergence theorem can be extended to the 
Hopfield net and generalisations thereof, to realise the storage capacity to its theoretical 
maximum. By training with noise we can create arbitrarily shaped neighbourhoods of 
content-addressability, again to the capacity of the net; ‘real’ data create the required 
neighbourhoods. 

The algorithm (3) and its symmetrical equivalent can also be generalised to cycles 
of patterns (Sompolinsky and Kanter 1986), ultrametric hierarchies (Parga and Virasoro 
1986, Cortes et a1 1987, Gutfreund 1988), and multiconnected models (Gardner 1987b). 
Finally, we note that there is also another set of algorithms (Gardner 1987a, Diederich 
and Opper 1987, Forrest 1988, Krauth and MCzard 1987) which train on the prescribed 
patterns only (without noise). In Gardner (1987a), Forrest (1988) and Krauth and 
MCzard (1987), the algorithm obtains a solution T* such that 

for each pattern p and for each i, where C is a constant, and where the mask E ?  is 
defined as 

This algorithm also converges provided solutions exist. These algorithms should 
have shorter convergence times since they train only on the patterns, and increasing 
the value of C to some point will enhance content addressability. Analytic results 
(Gardner 1987a, Gardner and Derrida 1988) on the existence of solutions with the 
property (10) can also be obtained for both random and correlated patterns. 
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